کاربردها

//کاربردها

کاربردها

نظریه بازی در مطالعهٔ طیف گسترده‌ای از موضوعات کاربرد دارد. از جمله نحوه تعامل تصمیم گیرندگان در محیط رقابتی به شکلی که نتایج تصمیم هر عامل موثر بر نتایج کسب شده سایر عوامل می باشد. در واقع ساختار اصلی نظریه بازی ها در بیشتر تحلیلها شامل ماتریسی چند بعدی است که در هر بعد مجموعه ای از گزینه ها قرار گرفته‌اند که درآرایه های این ماتریس نتایج کسب شده برای عوامل در ازاء ترکیب های مختلف از گزینه های مورد انتظار است. یکی از اصلی ترین شرایط بکارگیری این نظریه در تحلیل محیط های رقابتی، وفاداری عوامل متعامل در رعایت منطق بازی است. در صورتی که این پیش شرط به هر دلیل رعایت نگردد، یا بایستی در انتظار نوزایی ساختار جدید دیگری از منطق تحلیلی بازیگران متعامل بود و یا به دلیل عدم پیش بینی نتایج بازی و یا گزینه های مورد انتظار سیستم تصمیم گیرنده به سراغ سایر روش های تحلیل در یک چنین محیط های تصمیم گیری رفت. هر چه قدر توان پیش بینی گزینه ها و نتایج حاصل از انتخاب آنها بیشتر باشد، عدم قطعیت در این تکنیک کاهش می یابد. نوعی از بازی نیز وجود دارد که به دلیل اینکه امکان برآورد احتمال وقوع نتایج در آنها وجود ندارد به بازی های ابهام شهرت دارند.

این نظریه در ابتدا برای درک مجموعهٔ بزرگی از رفتارهای اقتصادی به عنوان مثال نوسانات شاخص سهام در بورس اوراق بهادار و افت و خیز بهای کالاها در بازار مصرف‌کنندگان ایجاد شد.

تحلیل پدیده‌های گوناگون اقتصادی و تجاری نظیر پیروزی در یک مزایده، معامله، داد و ستد، شرکت در یک مناقصه، از دیگر مواردی است که نظریه بازی در آن نقش ایفا می‌کند.

پژوهش‌ها در این زمینه اغلب بر مجموعه‌ای از راه‌بردهای شناخته شده به عنوان تعادل در بازی‌ها استوار است. این راه‌بردها اصولاً از قواعد عقلانی به نتیجه می‌رسند. مشهورترین تعادل‌ها، تعادل نش است. براساس نظریهٔ تعادل نش، اگر فرض کنیم در هر بازی با استراتژی مختلط ، بازیکنان به طریق منطقی و معقول راه‌بردهای خود را انتخاب کنند و به دنبال حد اکثر سود در بازی هستند، دست کم یک راه‌برد برای به دست آوردن بهترین نتیجه برای هر بازیکن قابل انتخاب است و چنانچه بازیکن راه‌کار دیگری به غیر از آن را انتخاب کند، نتیجهٔ بهتری به دست نخواهد آورد.

کاربرد نظریه بازی‌ها در شاخه‌های مختلف علوم مرتبط با اجتماع از جمله سیاست (همانند تحلیل‌های بروس بوئنو د مسکیتا)، جامعه شناسی، و حتی روان شناسی در حال گسترش است.

در زیست شناسی هم برای درک پدیده‌های متعدد، از جمله برای توضیح تکامل و ثبات و نیز برای تحلیل رفتار تنازع بقا و نزاع برای تصاحب قلمرو از نظریه بازی استفاده می‌شود.

امروزه این نظریه کاربرد فزاینده‌ای در منطق و دانش کامپیوتر دارد. دانشمندان این رشته‌ها از برخی بازی‌ها برای مدل‌سازی محاسبات و نیز به عنوان پایه‌ای نظری برای سیستم‌های چندعاملی استفاده می‌کنند.

هم چنین این نظریه نقش مهمی در مدل‌سازی الگوریتم‌های بر خط (Online Algorithms) دارد.

کاربردهای این نظریه تا آن جا پیش رفته است که در توصیف و تحلیل بسیاری از رفتارها در فلسفه و اخلاق ظاهر می‌شود.

۱۳۹۲-۱۲-۲۷ ۰۹:۱۸:۲۲ +۰۳:۳۰اسفند ۲۷ام, ۱۳۹۲|Categories: عمومی|Tags: |بدون ديدگاه

ثبت ديدگاه

پرداخت

1-پرداخت آنلاین
برای پرداخت آنلاین از لینک زیر استفاده کنید
پرداخت آنلاین
2- پرداخت آفلاین
برای پرداخت آفلاین مبلغ مورد نظر را به یکی از شماره کارت
6037997245888723بانک ملی