داده کاوی با آنالیز های متداول آماری متفاوت است؛در زیرمی توان برخی از اصلی ترین تفاوت های داده کاوی و آنالیز آماری را مشاهده نمود:

آنالیز آماری:
•  آمار شناسان همیشه با یک فرضیه شروع به کار می کنند.
•  آنها از داده های عددی استفاده می کنند.
•   آمارشناسان باید رابطه هایی را ایجاد کنند که به فرضیه آنها مربوط است.
•  آنها می توانند داده های نابجا و نادرست را در طول آنالیز مشخص کنند.
•  آنها می توانند نتایج کار خود را تفسیر و برای مدیران بیان کنند.

داده کاوی:
•  به فرضیه احتیاجی ندارد.
•  ابزارهای داده کاوی از انواع مختلف داده ، نه تنها عددی می توانند استفاده کنند.
•  الگوریتمهای داده کاوی به طور اتوماتیک روابط را ایجاد می کنند.
•  داده کاوی به داده های صحیح و درست نیاز دارد.
•  نتایج داده کاوی نسبتا پیچیده می باشد و نیاز به متخصصانی جهت بیان آنها به مدیران دارد.

جهت درک بهتر تفاوت داده کاوی و آنالیزهای آماری به مثال زیر که در مورد شناخت کلاهبرداری های شرکت بیمه می باشد، توجه کنید.

روش آنالیز آماری:

یک مفسر ممکن است متوجه الگوی رفتاری شود که سبب کلاهبرداری بیمه گردد. بر اساس این فرضیه، مفسر به طرح یک سری سوال می پردازد تا این موضوع را بررسی کند. اگر نتایج حاصله مناسب نبود، مفسر فرضیه را اصلاح می کند و یا با انتخاب فرضیه دیگری مجددا شروع می کند. این روش نه تنها وقت گیر است بلکه به قدرت تجزیه و تحلیل مفسر نیز بستگی دارد. مهمتر از همه اینکه این روش هیچ وقت الگوهای کلاهبرداری دیگری را که مفسر به آنها مظنون نشده و در فرضیه جا نداده ، پیدا نمی کند.

روش داده کاوی:

یک مفسر  سیستم های داده کاوی را ساخته  و  پس از طی مراحلی از جمله  جمع آوری داده ها،  یکپارچه سازی داده ها به انجام عملیات داده کاوی می پردازد. داده کاوی تمام الگوهای غیرعادی را که از حالت عادی و نرمال انحراف دارند و ممکن است منجر به کلاهبرداری شوند را پیدا می کند.

نتایج داده کاوی حالت های مختلفی را که مفسر باید در مراحل بعدی تحقیق کند، نشان می دهند. در نهایت مدل های به دست آمده می توانند مشتریانی را که امکان کلاهبرداری دارند، پیش بینی نمایند.